📚 Book Lovin' Geek Mamas are on a mission to promote a love of books and reading to everyone. We help our visitors to find their next favorite book. Our authors regularly create and post so-called listicles (also known as booklists) on various mostly tech-related topics.

Best Data Analysis Books To Read

Looking for the best Data Analysis books? Browse our list to find excellent book recommendations on the subject.

Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython (2017)

 Best Data Analysis Books To ReadGet complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively.
Author(s): Wes McKinney

Microsoft Excel Data Analysis and Business Modeling (5th Edition) (2016)

 Best Data Analysis Books To ReadMaster business modeling and analysis techniques with Microsoft Excel 2016, and transform data into bottom-line results. Written by award-winning educator Wayne Winston, this hands on, scenario-focused guide helps you use Excel’s newest tools to ask the right questions and get accurate, actionable answers.
Author(s): Wayne Winston

Qualitative Data Analysis: A Methods Sourcebook (2019)

 Best Data Analysis Books To ReadMiles, Huberman, and Saldaña’s Qualitative Data Analysis: A Methods Sourcebook is the authoritative text for analyzing and displaying qualitative research data. The Fourth Edition maintains the analytic rigor of previous editions while showcasing a variety of new visual display models for qualitative inquiry. Graphics are added to the now-classic matrix and network illustrations of the original co-authors.
Author(s): Matthew B. Miles, A. Michael Huberman, et al.

Data Analysis Using SQL and Excel, 2nd Edition (2015)

 Best Data Analysis Books To ReadData Analysis Using SQL and Excel, 2nd Edition shows you how to leverage the two most popular tools for data query and analysis—SQL and Excel—to perform sophisticated data analysis without the need for complex and expensive data mining tools. Written by a leading expert on business data mining, this book shows you how to extract useful business information from relational databases.
Author(s): Gordon S. Linoff

Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking (2013)

 Best Data Analysis Books To ReadWritten by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the “data-analytic thinking” necessary for extracting useful knowledge and business value from the data you collect.
Author(s): Foster Provost, Tom Fawcett

Data Analysis (2017)

 Best Data Analysis Books To ReadData Analysis: A Model Comparison Approach to Regression, ANOVA, and Beyond is an integrated treatment of data analysis for the social and behavioral sciences. It covers all of the statistical models normally used in such analyses, such as multiple regression and analysis of variance, but it does so in an integrated manner that relies on the comparison of models of data estimated under the rubric of the general linear model.
Author(s): Charles M. Judd , Gary H. McClelland, et al.

Data Analysis: A Bayesian Tutorial (2006)

 Best Data Analysis Books To ReadStatistics lectures have been a source of much bewilderment and frustration for generations of students. This book attempts to remedy the situation by expounding a logical and unified approach to the whole subject of data analysis.This text is intended as a tutorial guide for senior undergraduates and research students in science and engineering.
Author(s): Devinderjit Sivia, John Skilling

Practical Statistics for Data Scientists: 50 Essential Concepts (2017)

 Best Data Analysis Books To ReadStatistical methods are a key part of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what’s important and what’s not.Many data science resources incorporate statistical methods but lack a deeper statistical perspective.
Author(s): Peter Bruce, Andrew Bruce

Data Analysis for Continuous School Improvement (2017)

 Best Data Analysis Books To ReadThis book is a call to action. It is about inspiring schools and school districts to commit to continuous school improvement by providing a framework that will result in improving teaching for every teacher and learning for every student through the comprehensive use of data.
Author(s): Victoria L. Bernhardt

Best Data Analysis Books to Read

We highly recommend you to buy all paper or e-books in a legal way, for example, on Amazon. But sometimes it might be a need to dig deeper beyond the shiny book cover. Before making a purchase, you can visit resources like Library Genesis and download some data analysis books mentioned below at your own risk. Once again, we do not host any illegal or copyrighted files, but simply give our visitors a choice and hope they will make a wise decision.

Python for Geospatial Data Analysis

Author(s): Bonny P. McClain
ID: 3061514, Publisher: O'Reilly Media, Inc., Year: 2022, Size: 25 Mb, Format: epub

Applied Spatial Statistics and Econometrics Data Analysis in R

Author(s): Katarzyna Kopczewska
ID: 2735893, Publisher: Routledge, Year: 2021, Size: 364 Mb, Format: pdf

Environmental Valuation with Discrete Choice Experiments: Guidance on Design, Implementation and Data Analysis

Author(s): Petr Mariel, David Hoyos, Jürgen Meyerhoff, Mikolaj Czajkowski, Thijs Dekker, Klaus Glenk, Jette Bredahl Jacobsen, Ulf Liebe, Søren Bøye Olsen, Julian Sagebiel, Mara Thiene
ID: 2831417, Publisher: Springer, Year: 2021, Size: 2 Mb, Format: pdf

Please note that this booklist is not definite. Some books are absolutely hot items according to Los Angeles Times, others are composed by unknown authors. On top of that, you can always find additional tutorials and courses on Coursera, Udemy or edX, for example. Are there any other relevant links you could recommend? Drop a comment if you have any feedback on the list.

Rate article
Add a comment

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: